Short-coupled variant of torsades de pointes and normal QT interval: differential diagnosis with Brugada syndrome

Andrés Ricardo Pérez Riera MD PhD;

¹ Chief of Electro-Vectorcardiographic Sector. Cardiology Division, ABC's Faculty of Medicine, ABC Foundation, Santo André, São Paulo, Brazil;

Address for Correspondence:

Mailing Address: Andrés Ricardo Pérez Riera MD, Rua Sebastião Afonso, 885 - Jd.

Miriam. São Paulo - Brazil.

Zip Code: 04417-100 – São Paulo – Brazil

Phone: (011) 5621-2390

Fax: (011) 5625-7278/ 5506-0398

E-mail: riera@uol.com.br

Key words: Short-coupled variant of Torsades de Pointes and normal QT interval – Brugada syndrome – Torsade de Pointes – Polymorphic Ventricular Tachycardia.

Abstract

In this review, we show the main characteristics of the so-called short-coupled variant of torsades de pointes (TdP) and normal QT interval and the differential aspects with Brugada syndrome (BrS).

Both entities occur in patients without apparent structural heart disease, possibly with positive family background, predominantly affect people in their productive time of life, have a high tendency to appearance of syncope and/or sudden cardiac death as a consequence of bursts of polymorphic ventricular tachycardia (PVT) that degenerate into ventricular fibrillation (VF), not related to strain and in which an extremely short coupling of initial extra-systole, frequent episodes of electrical storm, normal(or near normal) QT/QTc interval on ECG and heterogeneity of ventricular refractoriness in some area of ventricular wall thickness are observed.

Additionally, both could be related to hypokalemia^{1,2}. Even presenting so many coincidences, there are elements that enable a differentiation between both entities, such as the genetic aspects known only in BrS, race incidence and different predominant gender, ECG characteristics (although in both prominent J waves have been described)³, morphological aspects of tachyarrhythmic events, and the presence of supraventricular arrhythmias, triggers, preferential moments of tachyarrhythmic events and different response to therapeutic measures. Analysis of the etiology and mechanism of the tachycardia is of paramount importance for initiation of specific therapies. Although mechanical cardiac function may seem normal, such patients might have certain discrete anatomic abnormalities, unidentifiable with current investigation tools⁴.

The short-coupled variant of torsades de pointes and normal QT interval is a polymorphic, polymorphous or multiform⁵ PVT with typical morphology of TdP: the QRS morphology shows alternating polarity in a modulating pattern, so that the complexes appear to be twisting around the baseline, observed in patients without organic heart disease, adverse drug effects, or electrolyte disturbances, which occurs spontaneously and initiated by short-

coupled premature ventricular complex (240 ms in average) in patients with normal QT interval⁶.

The classical or typical TdP on the other hand is characterized not only by its particular ECG pattern, but also by its context of congenital or acquired long QT syndrome and with long coupling interval (telediastolic) of the initial premature beat. In short-coupled variant of TdP exists an unusual particularity: an extremely short coupling interval of the first beat or of the isolated premature beats. These patients have clinical and electrocardiographic abnormalities that are sufficiently coherent for them to constitute a new pathological entity, which Leenhardt et al., suggest calling "torsades de pointes with a short coupling interval"^{7;8} (Leenhardt disease).

The entity is observed in young, healthy children and young adults (average: 34.6 years) and most probably covers several underlying electrophysiological abnormalities⁹.

Some ECG recordings showed isolated ventricular extrasystoles with short coupling intervals. The PVT is characterized by changing QRS morphology, sometimes accompanied by slight changes in the rate. It is a particularly malignant form of PVT that is thought to be intermediate between ordinary PVT, and ventricular fibrillation (VF).

There are references in literature of electrical storm¹⁰ (ES) and intractable VF lifesaving with cardiopulmonary bypass or deep sedation followed by a combination therapy using verapamil and mexiletine. In this case, the ECG pattern consisting of a prominent J wave in leads V3-V6 that disappears with the use of those drugs. The ES was evoked with autonomic receptor stimulation and a blockade test. The patient's frequent VF attacks were triggered by short-coupled premature ventricular contractions with RBBB morphology and left-axis deviation³.

There are references of hypokalemia as etiology³ (K=3.4 mmol/L). Monophasic action potential duration at 90% repolarization (MAPD90) in the right ventricular apex was very short (175 ms). The MAPD90 returned to normal after loading potassium (230 ms) and after oral amiodarone therapy (240 ms), and PVT no longer occurred. With continued oral amiodarone and spironolactone therapy, the patient has been free of syncope attack over a follow-up period of 5 years. A familial history of TdP and SCD was described¹¹.

Heterogeneity of ventricular refractoriness was observed together with shortness of the effective refractory period measured at the right ventricular inflow site where the paced QRS morphology was the same as that of the initial beat of TdP. Verapamil could suppress frequent ventricular premature complexes with a short coupling interval, which lead to TDP.

PVT can be induced by triple ventricular extrastimuli.

A pure potassium channel blocker was successful in inhibiting PVT inducibility by prolongation of refractoriness. These results suggested that triggered ventricular premature complexes might be representing the initiating mechanism, whereas the shortness of local refractory period and heterogeneity of ventricular refractoriness may play a role in the development and the maintenance of TdP¹².

This kind of VT had a high incidence of SCD, so it was very important for physicians to identify and treat it promptly with long-term verapamil¹³. Although verapamil is frequently recommended, mortality rates remain high¹⁴.

The entity is a malignant disease that shares several characteristics with IVF. In Table 1 below, we show the possible etiology of truly PVT and TdP.

ETIOLOGY OF POLYMORPHIC VENTRICULAR TACHYCARDIA (TRULY PVT AND TdP)

A) WITH STRUCTURAL HEART DISEASE

- 1) Chronic coronary heart disease;
- 2) Prinzmetal variant;
- 3) Acute myocardial infarction;
- 4) Severe heart failure.

B) WITHOUT STRUCTURAL HEART DISEASE

1) Congenital long QT syndrome: TdP associated with long QT interval related to bradyarrhythmia. The most prevalent inclusion bradyarrhythmia is > or = second-degree AV block, preceding pauses or electrolytes abnormalities.

Predictors for these are previous amiodarone or diuretic intake, presentation as syncope, low serum potassium level, and longer QTc at admission¹⁵;

- 2) Congenital short QT syndrome;
- 3) Genuine idiopathic ventricular fibrillation with normal basal electrocardiogram;
- 4) Brugada syndrome;
- 5) Some Sudden Unexpected Nocturnal Death Syndrome (SUNDS) or SUDS;
- 6) Idiopathic ventricular tachycardia;
- 7) PVT of ventricular pre-excitation* (atrial fibrillation with a rapid ventricular response);
- 8) PVT verapamil sensitive or TdP with short coupling interval in a patient without organic heart disease and normal QT interval (Leenhardt disease);
- 9) Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT); catecholamine-sensitive polymorphic ventricular tachycardia or Familial Polymorphic Ventricular Tachycardia (FPVT).

In Table 2 below we show the differential diagnosis between truly PVT and TdP.

Table 2
DIFFERENTIAL DIAGNOSIS BETWEEN TRULY PVT AND TdP

	SHORT-COUPLED	TdP
	VARIANT OF PVT	
Couplet of initial	very short: 240 ms in	long or telediastolic: 600
premature ventricular	average.	ms.
complex:		
basal heart rate of ecg:	normal.	bradycardia tendency.
qt interval	normal	prolonged: in average 600
		ms
u wave of basal ecg	absent	increases in voltage.
rate of event:	very fast. is frequent from	fast. rates typically greater

^{*} Presence of multiple accessory pathways, posteroseptal accessory pathways, and a preexcited R-R interval of less than 220 ms during atrial fibrillation are associated with a higher risk for VF.

	260 to 352 bpm.	than 200 beats/m (200 to
etiology	a) with structural heart disease: 1) Chronic coronary heart disease; 2) Prinzmetal variant; 3) Acute myocardial infarction; 4) Severe heart failure. b) without structural heart disease: 1) brs; 2) genuine ivf; 3) pvt of ventricular pre-excitation; 4) pvt verapamil sensitive; 5) catecholaminergic	LQTS: a) congenital; b) acquired: (including drug and metabolic causes ¹⁴)
Prevalence:	pvt. infrequent	more frequent
Magnesium IV therapy and other therapies:	ICD is not indicated in isolation, but associated in cases of verapamil-sensitive PVT, with high doses of verapamil. the drug increases the coupling interval of the extrasystoles and decreases or even suppresses some repetitive forms. this is the only drug apparently active on arrhythmias; however, it does not prevent sudden death (SD). in recurrent forms the indications for an icd should be considered. in BrS implantation of defibrillators is recommended associated with quinidine, cilostazol, isoproterenol.	Attenuation of early after depolarization in acquired forms. in congenital LQTS therapeutic options include: beta-blockers, cardiac sympathetic denervation, and implantation of pacemakers or ICD and genotype-specific therapy 16.
	in CPVT beta-blockers are the treatment of choice ¹⁶ . in	

	30% of patients an icd may	
	1 2	
	be required. life-long beta-	
1	olocker therapy is required.	
i	n some patients SCD	
	occurred, probably due to	
1	reatment interruption ⁸ .	

Observation: There is a description in a 72-year-old woman with a history of recurrent syncope over 3 years of association with congenital long QT syndrome with late onset of bradycardia-dependent and short-coupled variant of TdP. The patient's stormy course was only controlled with pacing. She received a permanent dual-chamber pacemaker and prophylactically a beta-blocker was added. Over the subsequent 14 months she has remained asymptomatic¹⁷.

In Table 3 below, we show the main differential characteristics between Brugada syndrome and short-coupled variant of torsades de pointes and normal QT interval.

Table 3

MAIN DIFFERENTIAL CHARACTERISTICS BETWEEN SHORT-COUPLED

VARIANT OF TORSADES DE POINTES AND NORMAL QT INTERVAL AND

BRUGADA SYNDROME

	SHORT-COUPLED	BRUGADA
	VARIANT OF	SYNDROME
	TORSADES DE	
	POINTES AND	
	NORMAL QT	
	INTERVAL	
FAMILIAL BACKGROUND	There are references of	Sporadic (approximately
	familial forms.	65%) or autosomal
		dominant pattern of
		transmission (35%)
		characterized with
		incomplete penetrance
AGE:	Young, healthy children	Average 41±15 years.
	and young adults	During adulthood may

	(average: 34.6 years).	be observed in infants,
		children and elderly
		people (less frequently).
RACE:	Caucasian	Yellow predominance.
	predominance.	
RELATIVE SEX INCIDENCE:	Not referred. Women	8:1 to 10:1 men vs.
	have a higher incidence	women.
	of TdP ¹⁸ .	
GENES/CHROMOSOME	?	SBr1: SCN5A Nav1.5,
AFFECTED:		the gene encoding for
		the alpha subunit of the
		cardiac Na ⁺ channel on
		chromosome 3 locus
		3p21. Present in 18-30%
		of cases.
		SBr2: Locus3p24; I_{Na}^+
		channel; Gene GPD1L.
		SBr3: Locus 12p13.3;
		I _{Ca} ⁺² channel; Gene:
		CACNA1C, Ca _v 1.2
		SBr4: Locus: 10p12.33;
		Channel: I _{Ca} ⁺² ;
		Gene: CACNB2b,
		Cavβ2b.
ECG CHARACTERISTICS:	Normal. Some	Possibly, prolongation
	recordings show	of P-wave duration, long
	isolated premature	PR interval (50%). This
	ventricular contractions	prolongation of the PR
	with short coupling	interval is observed
	intervals.	predominantly in cases
	There are references of	where the SCN5A gene
	prominent J wave in	mutation can be proven
	prominent J wave in	mutation can be proven

	middle and left	(carriers).
	precordial leads V ₃ -V ₆ ¹⁰ .	ST-segment elevation in
		the right precordial leads
		(V_1-V_2) or from V_1 to V_3
	Normal QTc interval.	(antero-septal wall): J
		wave (Brugada type 1,
		Brugada signal or
		Brugada phenotype).
		Exceptionally the ST
		segment elevation is
		observed in inferior
		leads ¹⁹ or left precordial
		leads ²⁰ .
		The ECG changes are
		often dynamic or
		concealed.
		QTc interval: normal or
		slightly long ²¹ .
SUPRAVENTRICULAR	Not mentioned in	Present in 29% of cases.
ARRHYTHMIAS:	literature.	Paroxysmal atrial
		fibrillation;
		atrioventricular
		junctional rhythms
		episodes and Wolff-
		Parkinson-White
		syndrome ²² .
TRIGGERS:		Fever, vagotonic agents
	with autonomic receptor	or nocturnal vagotony, α

	stimulation and a	adrenergic agonists, beta
	blockade test.	adrenergic blockers,
	Shortness of local	tricyclic or tetracyclic
	effective refractory	antidepressants, first
	period measured at the	generation
	right ventricular inflow	antihistamines
	site where the paced	(dimenhydrinate
	QRS morphology was	infusion), glucose
	the same as that of the	associated with insulin,
	initial beat of TdP.	hypokalemia,
	Heterogeneity of	antimalarials,
	ventricular	anesthetics, alcohol and
	refractoriness is the one	cocaine toxicity.
	of the main triggers.	
	A pure potassium	
	channel blocker was	
	successful in inhibiting	
	PVT inducibility by	
	prolongation of	
	refractoriness.	
	They're a reference of	
	hypokalemia as trigger.	
VT MORPHOLOGY:	Polymorphic and with	
	alternating polarity in a	monomorphic.
	modulating pattern, so	
	that the complexes	
	appear to be twisting	
	around the baseline.	
	Sometimes	
	accompanied by slight	
MOMENT OF PVT/VF EPISODES:	changes in rate.	At root and at night
WOWENT OF FVI/VF EPISODES:	At rest.	At rest and at night

		during sleep (85% of
		cases). Nocturnal vagal
		predominance.
ELECTRICAL STORM/VF:	Frequent.	Frequent.
ES TREATMENT:	Cardiopulmonary	Cardiopulmonary
	bypass or deep sedation	bypass; general
	followed by a	anesthesia;
	combination therapy	isoproterenol.
	using verapamil and	Orthotopic
	mexiletine ¹⁰ .	transplantation was
		referred as heroic
		procedure ²³ .
IMPLANTABLE	Although verapamil is	ICD is the only currently
CARDIOVERTER/DEFIBRILLATO	frequently	proven effective
R ICD:	recommended, mortality	treatment.
	rates remain high ¹⁶ .	Inappropriate shocks
	During a mean follow-	also may be delivered
	up of 7 years of 14	for atrial fibrillation, and
	patients, Leenhardt et al	other types of
	have 5 deaths (4 SD).	supraventricular
	Nine patients are alive,	tachycardia, prompting
	3 with ICD and 6	ICD reprogramming
	treated with verapamil	and/or adjunctive
	alone ⁸ .	therapy.
		Therapy with ICD
		remains restricted in
		many countries, and is
		associated with a
		prohibitive cost for the
		community, and may be
		a cause of significant
		morbidity in patients

		with frequent episodes
		of arrhythmia or ES.
RADIOFREQUENCY CATHETER	They cannot be treated	Haissaguerre et al ²⁵ ,
ABLATION:	by catheter ablation ²⁴ .	localized by mapping
		the earliest endocardial
		activity and by focal
		radiofrequency ablation
		of PVT/VF in three
		patients with Brugada
		Syndrome. The authors
		conclude that triggers
		from the Purkinje
		arborization or the
		RVOT have a crucial
		role in initiating VF
		associated with Brugada
		syndrome.
TREATMENT WITH DRUGS:	Verapamil had an	1) Quinidine: this drug
	excellent therapeutic	in high doses (1200-
	effect for it. The drug	1500 mg/day) is
	could suppress frequent	effective in restoring the
	ventricular premature	epicardial AP dome,
	complexes with a short	thus normalizing ST-
	coupling interval, which	segment and preventing
	lead to TdP ¹²	phase 2 reentry and
	Deep sedation followed	PVT, because it is a
	by a combination	transient outward
	therapy using verapamil	current blocker. In
	and mexiletine is	experimental models
	mentioned as	and clinically, quinidine
	effective ¹⁰ .	may be an alternative
		strategy to ICD

placement in asymptomatic patients with Brugada syndrome and inducible arrhythmia²⁶.

- 2) Cilostazol: It is a quinolinone derivative that inhibits cellular phosphodiesterase type III. The drug acts by suppression of I(to) activity secondary to the increase in heart rate and/or to an increase in Ca²⁺ current due to an elevation of intracellular cyclic AMP concentration via inhibition of type III phosphodiesterase activity;²⁷.
- 3) Isoproterenol: It is a drug that boosts the L-type Ca²⁺ current. It is indicated in ES in association with general anesthesia and cardiopulmonary bypass. Oral quinidine bisulphate at a dose of 1000mg/day can

successfully suppress the ES^{28} . 4) Sotalol: there is one reference in a 53-yearold man that carried a Brugada syndrome sodium channel SCN5A mutation (4189delT) with recurrent syncopal events and a malignant family history treated for 13 years with sotalol drug therapy with no further occurrence of symptoms²⁹.

References:

- Nimmannit S, Malasit P, Chaovakul V, et al: Pathogenesis of sudden unexplained nocturnal death (lai tai) and endemic distal renal tubular acidosis. *Lancet* 1991; 338:930-932
- Kusano KF, Hata Y, Yumoto A, Emori T, Sato T, Ohe T. Torsade de pointes with a normal QT interval associated with hypokalemia: a case report. Jpn Circ J. 2001; 65:757-760
- 3) Durand-Dubief A, Burri H, Chevalier P, Touboul P. Short-coupled variant of torsades de pointes with intractable ventricular fibrillation: lifesaving effect of cardiopulmonary bypass. J Cardiovasc Electrophysiol. 2003; 14:329
- 4) Wever EF, Robles de Medina EO. Sudden death in patients without structural heart disease. J Am Coll Cardiol. 2004; 43:1137-1144.
- 5) Guaragna RF, Naccarella F, Palmieri M, Alboni P. Multiform ventricular tachycardias and Torsades de Pointe G Ital Cardiol. 1983; 13:260-268
- 6) Cheng TO. Short-coupled variant of torsades des pointes with normal QT interval and risk of sudden death. Am J Cardiol. 1996; 77:1028-1029

- Leenhardt A, Glaser E, Burguera M, Nurnberg M, Maison-Blanche P, Coumel P. Torsades de pointes with short coupling interval Arch Mal Coeur Vaiss. 1993; 86:777-782
- 8) Leenhardt A, Glaser E, Burguera M, Nurnberg M, Maison-Blanche P, Coumel P.Short-coupled variant of torsade de pointes. A new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias. Circulation. 1994; 89:206-215.
- 9) Coumel P.Polymorphous ventricular tachyarrhythmias in the absence of structural heart disease. Pacing Clin Electrophysiol. 1997; 20: 2065-2067
- 10) Takeuchi T, Sato N, Kawamura Y, Takahashi F, Sato M, Kikuchi K, Akasaka N, Go K, Fujimoto K, Hasebe N.A case of a short-coupled variant of torsades de Pointes with electrical storm. Pacing Clin Electrophysiol. 2003; 26:632-636
- 11) Strasberg B, Welch W, Palileo E, Swiryn S, Bauernfeind R, Rosen KM.Familial inducible torsade de pointes with normal QT interval. Eur Heart J. 1983; 4:383-390
- 12) Shiga T, Shoda M, Matsuda N, Fuda Y, Hagiwara N, Ohnishi S, Watanabe A, Kasanuki H. Electrophysiological characteristic of a patient exhibiting the short-coupled variant of torsade de pointes. J Electrocardiol. 2001; 34:271-275
- 13) Ruan Y, Wang L. Short-coupled variant of torsade de pointes. J Tongji Med Univ. 2001; 21:30-31
- 14) Soffer J, Dreifus LS, Michelson EL.Polymorphous ventricular tachycardia associated with normal and long Q-T intervals. Am J Cardiol. 1982; 49: 2021-2029
- 15) Diaz-Castro O, Puchol A, Almendral J, Torrecilla EG, Arenal A, Martinez-Selles M.Predictors of in-hospital ventricular fibrillation or torsades de pointes in patients with acute symptomatic bradycardia. J Electrocardiol. 2004; 37:55-60
- 16) Viskin S, Belhassen B. Polymorphic ventricular tachyarrhythmias in the absence of organic heart disease: classification, differential diagnosis, and implications for therapy. Prog Cardiovasc Dis. 1998; 41:17-34
- 17) Chiladakis J, Karapanos G, Manolis AS. Idiopathic long QT syndrome with late onset of bradycardia-dependent and short-coupled variant of torsade de pointes. Int J Cardiol. 1998; 64:93-95

- 18) Surawicz B, Parikh SR. Differences between ventricular repolarization in men and women: description, mechanism and implications. Ann Noninvasive Electrocardiol. 2003; 8:333-340
- 19) Riera AR, Ferreira C, Schapachnik E, Sanches PC, Moffa PJ: Brugada syndrome with Athypical ECG: Downsloping STS segment Elevation in nferior leads J Electrocardiol 2004; 37:101-104
- 20) Horigome H, Shigeta O, Kuga K, et al: Ventricular fibrillation during anesthesia in association with J waves in the left precordial leads in a child with coarctation of the aorta. *J Electrocardiol* 2003; 36:339-343
- 21) Alings M, Wilde A. "Brugada" syndrome: Clinical data and suggested pathophysiologic mechanism. Circulation 1999; 99: 666-673
- 22) Eckardt L, Kirchhof P, Johna R, Haverkamp W, Breithardt G, Borggrefe M.: Wolff-Parkinson-White syndrome associated with Brugada syndrome. Pacing Clin Electrophysiol 2001; 24:1423-1424
- 23) Ayerza MR, de Zutter M, Goethals M, Wellens F, Geelen P, Brugada P. Heart transplantation as last resort against Brugada syndrome. J Cardiovasc Electrophysiol 2002; 13:943-944
- 24) Brunckhorst C, Delacretaz E. Ventricular tachycardia--etiology, mechanisms and therapy Ther Umsch. 2004; 61:257-264
- 25) Haissaguerre M, Extramiana F, Hocini M, et al. Mapping and Ablation of Ventricular Fibrillation Associated With Long-QT and Brugada Syndromes. Circulation. 2003 2003; 108:925-928
- 26) Hermida JS, Denjoy I, Clerc J, Extramiana F, Jarry G, Milliez P, Guicheney P, Di Fusco S, Rey JL, Cauchemez B, Leenhardt A. Hydroquinidine therapy in Brugada syndrome. J Am Coll Cardiol. 2004; 43:1853-1860
- 27) Tsuchiya T, Ashikaga K, Honda T, Arita M. Prevention of ventricular fibrillation by cilostazol, an oral phosphodiesterase inhibitor, in a patient with Brugada syndrome. J Cardiovasc Electrophysiol 2002; 13:698-701
- 28) Tanaka H, Kinoshita O, Uchikawa S, et al. Successful prevention of recurrent ventricular fibrillation by intravenous isoproterenol in a patient with Brugada syndrome. Pacing Clin Electrophysiol 2001; 24:1; 293-294

29) Glatter KA, Wang Q, Keating M, Chen S, Chiamvimonvat N, Scheinman MM.Effectiveness of sotalol treatment in symptomatic Brugada syndrome. Am J Cardiol. 2004; 93:1320-1322.