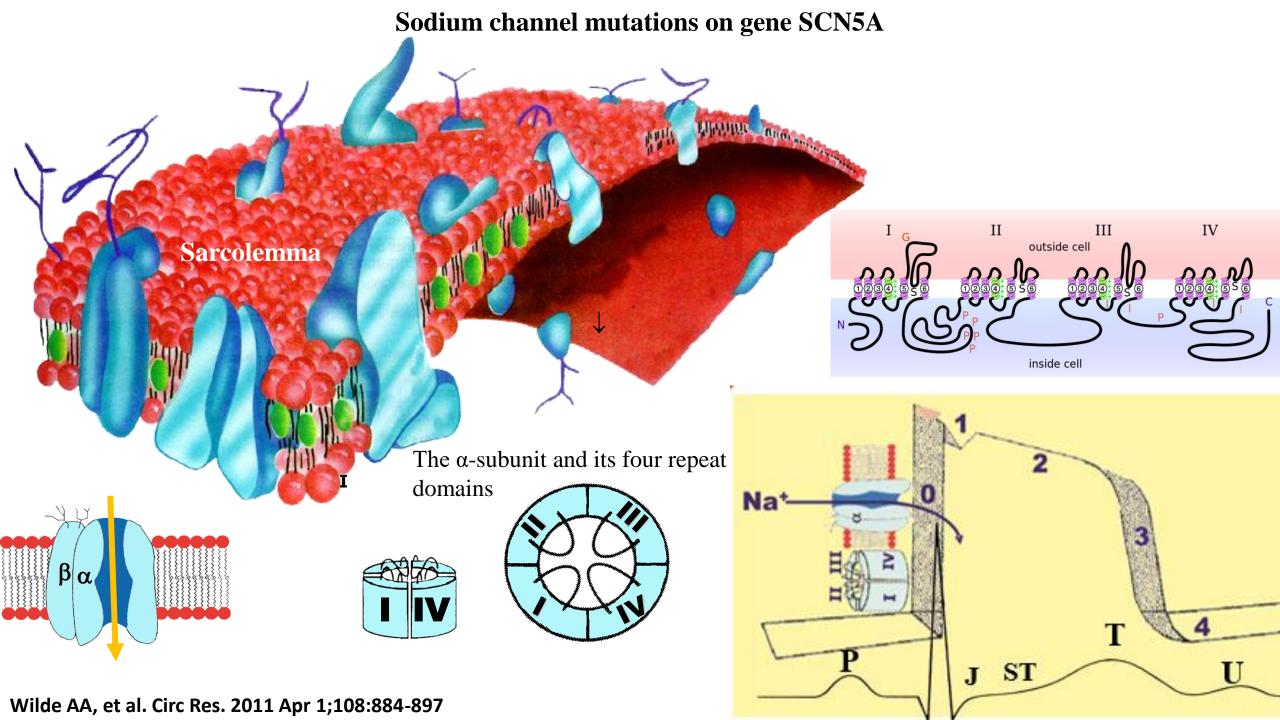

Brugada Syndromes types, locus, OMIM, gene, channels affected, percentage and authors

BrS-1 (1): Locus: 3p21-23; OMIM: 601144; Gene: SCN5A: Only the *SCN5A* gene is classified as having definitive evidence as a cause for BrS. (2); Ion channel and effect: INa⁺ \downarrow loss-of-function; Protein: NaV1.5 - α subunit of the cardiac sodium channel carrying the sodium current INa⁺; % of probands: 11-28%.

Amin et al (3) hypothesized based on a study of AF in a large cohort of BrS patients, that a reduced number of potentially triggering premature atrial contractions (PACs) in the presence of a more extensive substrate in SCN5A mutation carriers may account for AF being no more prevalent in patients with SCN5A mutations than in those without. Given the polemic and complex issues underlying the pathophysiology of BrS, one should regard this hypothesis as one potential mechanism of many that influence the prevalence of AF in BrS.


- 1. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392(6673):293-6.
- 2. S. Mohsen Hosseini, 1 Raymond Kim, Sharmila Udupa, Gregory Costain, Rebekah Jobling, Eriskay Liston, Seema M. Jamal, Marta Szybowska, Chantal F. Morel, Sarah Bowdin, John Garcia, Melanie Care, Amy C. Sturm, Valeria Novelli, Michael J. Ackerman, James S. Ware, Ray E. Hershberger, Arthur A.M. Wilde, Michael H. Gollob, On behalf of the National Institutes of Health Clinical Genome Resource Consortium. Reappraisal of Reported Genes for Sudden Arrhythmic Death. Evidence-Based Evaluation of Gene Validity for Brugada Syndrome. Circulation. 2018 Sep 18; 138(12): 1195–1205.doi:10.1161/CIRCULATIONAHA.118.035070
- 3. Amin AS, Boink GJ, Atrafi F, et al. Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in Brugada syndrome. Europace. 2011 Jul;13(7):968-75. doi: 10.1093/europace/eur011

Mutations in SCN5A lead to a broad spectrum of phenotypes, however the SCN5A gene is not commonly involved in the pathogenesis of BrS and associated disorders. Studies have revealed significant overlap between aberrant rhythm phenotypes, and single mutations have been identified that evoke multiple rhythm disorders with common gating lesions (1)

Representation of numerous phenotypes consequence of SCN5A gene mutations: Early repolarization syndrome (ERS); Brugada syndrome (BrS); Congenital long QT syndome variant 3 (LQT3); Progressive Cardiac Conduction Disease (PCCD) or Lenègre disease; Sick Sinus Syndrome (SSS); Sudden Unex- plained Nocturnal Death Syndrome(SUNDS); Multifocal Ectopic Purkinje-related Premature Contractions (MEPPC); Sudden Infant Death Syndrome (SIDS); Overlapping syndromes; Dilated Cardiomyopathy (DCM) Modified from

1. Pérez-Riera AR, Daminello Raimundo R, Akira Watanabe R, Figueiredo JL, de Abreu LC. Cardiac sodium channel, its mutations and their spectrum of arrhythmia phenotypes. J Hum Growth Dev. 2016;26(3):277-80.

Nomenclature and some functions of voltage-gated sodium channel alpha subunits

Protein name

Gene

GPDIL

RANGRF

PKP2

Locus: 12p13.3; OMIM: 911778

Locus: 17p13.1; OMIM: 607954

Locus: 12p11; OMIM: 602861

Associated human inherited primary

BrS2

BrS11

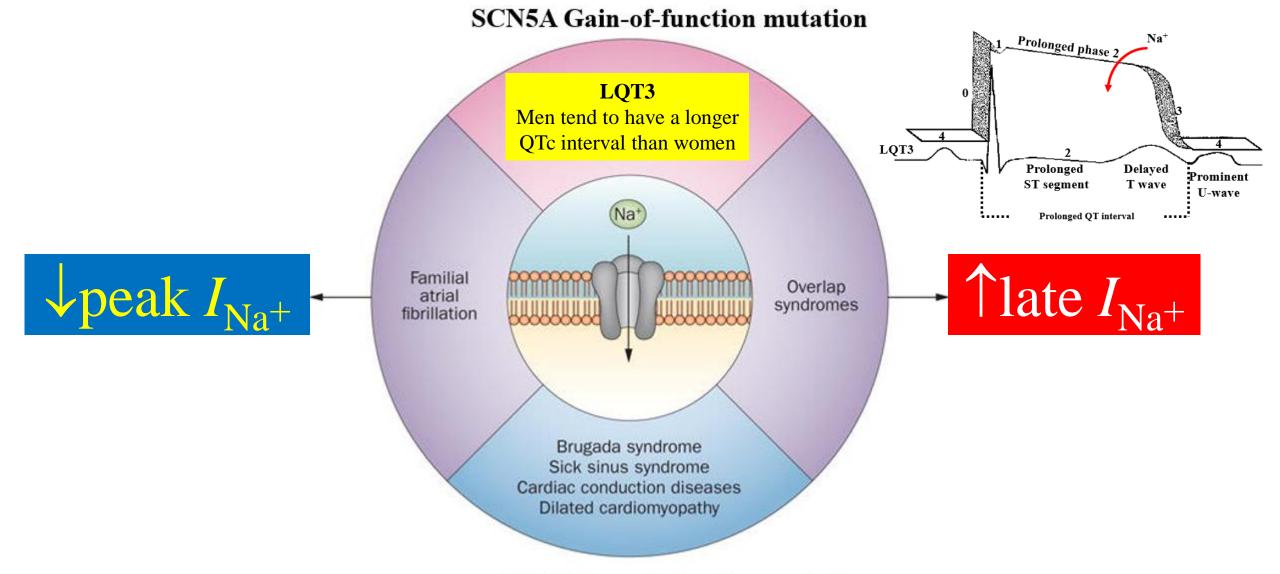
BrS15, SUNDS, arrhythmogenic

cardiomyopathy (AC)

		arrhythmia syndromes
SCN5A \downarrow peak I_{Na^+} \uparrow late I_{Na^+} Locus: 3p21-23; OMIM: 601144	NaV1.5 is an integral membrane protein and tetrodotoxin-resistant voltage-gated sodium channel subunit.	Cardiac: LQT3, BrS1, PCCD, familial AF and IVF, SSS, ERS, J-wave syndrome, SUNDS, MEPPC, SIDS, DCM, overlap
SCN1B Locus: 19q13,1; OMIM: 600235	Nav β 1- β 1 subunit of the sodium channel carrying the sodium current: INa+	BrS5, nonspecific cardiac conduction defect are caused by heterozygous mutation in the SCN1B
SCN2B Locus: 11q23; OMIM: 601327	Navβ2-β -2subunit of the cardiac sodium channel carrying the sodium current INa	BrS14

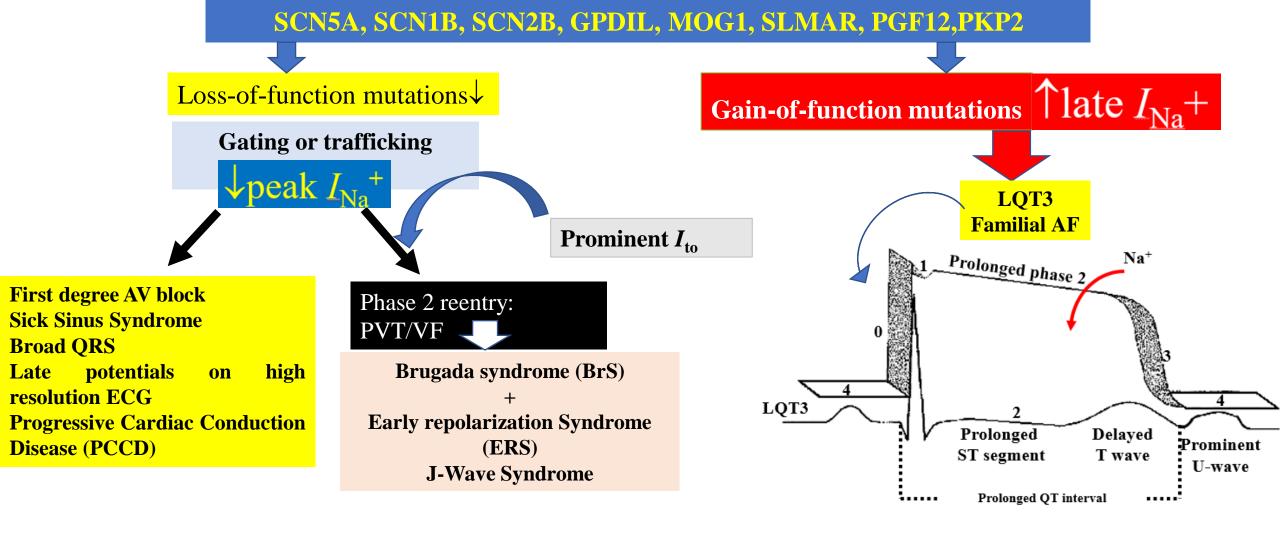
Glycerol-3phosphate dehydrogenase like

peptide-reduced GPD1-L activity leads to


1.5. The protein MOG1 is a cofactor of the

cardiac sodium channel, Nav1.5

Plakophilin-2 (PKP2)


phosphorylation of Nav1.5 and decreased INa+

Encodes MOG1 – influences trafficking of Nav

SCN5A loss-of-function mutation

Mutations in SCN5A can produce various clinical phenotypes. SCN5A \uparrow gain-of-function mutations can result in increased late I_{Na} , leading to LQT3. SCN5A loss-of-function mutations can lead to decreased \downarrow peak I_{Na} , which is associated with BrS, SSS, PCCD, and possibly dilated cardiomyopathy. Moreover, SCN5A mutations that cause both a gain in late I_{Na} and a loss of peak I_{Na} can be associated with a mixed phenotype or overlap syndromes (for example, BrS and LQT3). Similarly, both gain-of-function and loss-of-function mutations have been associated with FAF.

Schematic showing overlap syndromes resulting from genetic defects consequence of loss of function of Na⁺ channel current (INa) or gain of function in Late INa. In the absence of prominent Ito or IK-ATP, loss-of-function mutations in the inward currents result in various manifestations of conduction disease. In the presence of prominent Ito or IK-ATP, loss-of-function mutations in inward currents cause conduction disease as well as the J-wave syndromes (BrS and ERS). ERS is believed to be caused by loss-of-function mutations of inward current in the presence of prominent I_{TO} in certain regions of the left ventricle(LV), particularly the inferior wall of the LV. The genetic defects that contribute to BrS and ERS can also contribute to the development of LQT3 and PCCD, in some cases causing multiple expressions of these overlap syndromes. In some cases, structural defects contribute to the phenotype. PVT, polymorphic ventricular tachycardia; VF/ ventricular fibrillation

More than 400 mutations have been identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to a variety of channelopaties can be classified according to the alteration of INa-P and INa-L as gain-of-function, loss-of-function and both, few researchers have summarized the mechanisms in this way (1). Gain-of-function mutations in SCN5A lead to more Na⁺ influx into cardiomyocytes through aberrant channel gating causing LQT3. Slowed or incomplete inactivation of the NaV1.5 channel results in an additional inward current, known as the late or persistent sodium current (Ipst), during the plateau phase of the ventricular action potential with ST segment prolongation and late T occurrence. Among the mutations in SCN5A associated with LQT3 is 1795insD, which is characterized by the insertion of 3 nucleotides (TGA) at position 5537 C-terminal domain of the NaV1.5 protein (2). Carriers of this mutation may not only present with LQT3, but also with ECG features of sinus bradycardia, PCCD, and BrS, thus creating the first described arrhythmic 'overlap syndrome (3).

References

- 1. Han D, Tan H, Sun C, Li G.Dysfunctional Nav1.5 channels due to SCN5A mutations.Exp Biol Med (Maywood). 2018 Jun;243(10):852-863. doi: 10.1177/1535370218777972
- 2. Bezzina C., Veldkamp M.W., Van den Berg M.P., Postma A.V., Rook M.B., Viersma J.W., Van Langen I.M., Tan-Sindhunata G., Bink-Boelkens M.T.E., Van der Hout A.H., et al. A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ. Res. 1999;85:1206–1213. doi: 10.1161/01.RES.85.12.1206
- 3. Remme C.A., Wilde A.A.M., Bezzina C.R. Cardiac sodium channel overlap syndromes: Different faces of SCN5A mutations. Trends Cardiovasc. Med. 2008;18:78–87. doi: 10.1016/j.tcm.2008.01.002

- SCN5A 1795insD is supposed to be a gain-of-function mutation in light of the QT prolongation,
- related complexes; is caused by loss-of-function mutations in SCN5A result in amplitude reduction in peak Na⁺ current, further leading to channel

A loss-of-function mutation cause sinus bradycardia, progressive cardiac conduction disease, and BrS. Multifocal ectopic premature Purkinje-

- protein dysfunction. or cardiac conduction defect an entity with minor structural heart disease.
- Both loss- and gain-of-function mutations may cause DCM and/or AF. (1).
- On ECG PR interval prolongation is the only parameter that predicted the presence of a SCN5A mutation in BrS.
- Late potentials on high resolution ECG were more frequently observed in SCN5A mutation carriers (2).
- SCN5A mutation is associated with an increased risk of drug-induced ventricular arrhythmia in patients without baseline type-1 ECG. In particular, Snon-missense and Smissense-TP are at high risk (3).
- 1. Wilde AAM1, Amin AS2. Clinical Spectrum of SCN5A Mutations: Long QT Syndrome, Brugada Syndrome, and Cardiomyopathy.JACC Clin Electrophysiol. 2018 May;4(5):569-579. doi: 10.1016/j.jacep.2018.03.006
- 2. Robyns T1, Nuyens D, Vandenberk B1,2, Kuiperi C4, Corveleyn A4, Breckpot J4, Garweg C1,2, Ector J1,2, Willems R1,2.Genotype-phenotype relationship and risk stratification in loss-of-function SCN5A mutation carriers. Ann Noninvasive Electrocardiol. 2018 Apr 30:e12548. doi: 10.1111/anec.12548.
- 3. Amin AS1, Reckman YJ2, Arbelo E3, Spanjaart AM2, Postema PG2, Tadros R4, Tanck MW2, Van den Berg MP5, Wilde AAM6, Tan HL2.SCN5A mutation type and topology are associated with the risk of ventricular arrhythmia by sodium channel blockers.Int J Cardiol. 2018 Sep 1;266:128-132. doi: 10.1016/j.ijcard.2017.09.010).

Genetic Defects BrS	Cytogenetic location Locus	Gene/Protein	Ion Channel	Percent of Probands/ Phenotypes/Authors
BrS1 OMIM: 601144	3p21	SCN5A, Na _y 1.5	↓INa+	% probands: 11%-28% BrS, Other phenotypes: IVF Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, et al. Genetic basis and molecular mechanism for idiopathicventricularfibrillation.Nature.1998;392(6 6730:2936.
BrS2 OMIM: 911778;	3p22.3	GPD1L/Glycerol- 3phosphate dehydrogenase like peptide-reduced GPD1-L activity	↓INa ⁺ Glycerol phosphorylati on of Nav1.5 and ↓INa ⁺	Rare. Other phenotypes: Sudden Infant Death Syndrome (SIDS).London B, Michalec M, Mehdi H, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116(20):2260-8
BrS3 OMIM: 114205	12p13.3	CACNA1C, Ca _v 1.2.	↓ICa ²⁺	% probands: 6.6% Antzelevitch C, Pollevick GD, Cordeiro JM,, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442-9
BrS4 OMIM: 114205	10p12.33-p12.31	CACNB2/theCavβ- 2 subunit of the voltage- dependent L-type calcium channel	↓ICa ²⁺	% probands: 4.8%. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442-9.

BrS8 MIM number # 613123	12p11.23	HCN4/KCNJ8,Kir6.1 Potassium/sodium hyperpolarization- activated cyclic nucleotide- gated channel 4HCN4 is prominently expressed in the pace maker region of the mammalian heart	↑I _{K=ATP}	Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, Isbrandt D (May 2003). "Pacemaker channel dysfunction in a patient with sinus node disease". The Journal of Clinical Investigation. 111 (10): 1537–452% Ueda K, Hirano Y, Higashiuesato Y, Aizawa Y, Hayashi T, Inagaki N, et al. Role of HCN4 channel in preventing ventricular arrhythmia. Journal of human genetics. 2009;54(2):115-21)(Stephanie Biel , Marco Aquila , Brigitte Hertel , Anne Berthold , Thomas Neumann, Dario DiFrancesco 5, Anna Moroni, Gerhard Thiel 6, Silke Kauferstein 1Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Arch. 2016 Oct;468(10):1663-71. doi: Others phenotypes Sick sinus syndrome Sinus Node disease:
BrS9 # 616399	1p13.2	KCND3Kv4.3 K+ channel	Transient outward current (I-to) gain-of-function mutations	Giudicessi JR, Ye D, Tester DJ, Crotti L, Mugione A, Nesterenko VV, et al. Transient outward current (I(to)) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart rhythm. 2011;8(7):1024-32 Giudicessi, J. R., Ye, D., Kritzberger, C. J., Nesterenko, V. V., Tester, D. J., Antzelevitch, C., Ackerman, M. J. Novel mutations in the KCND3-encoded Kv4.3 K+ channel associated with autopsy-negative sudden

BrS12	3p21.2.p14.3	SLMAP	↓INa	Rare. Ishikawa T, Sato A, Marcou CA, Tester DJ, Ackerman MJ, Crotti L, et al. A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circulation Arrhythmia and electrophysiology. 2012;5(6):1098-107
BrS13	12p12.1	ABCC9, SUR2A ATP binding cassette subfamily C member 9	\uparrow I $_{K=ATP}$	Rare. Barajas-Martinez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, et al. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart rhythm. 2012;9(4):548-55
BrS14	11q23	SCN2B,Na	llINavβ2	Rare. Riuro H, Beltran-Alvarez P, Tarradas A, Selga E, Campuzano O, Verges M, et al. A missense mutation in the sodium channel beta2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome. Human mutation. 2013;34(7):961-6
BrS15	12p11	PKP2,Plalophillin-2	↓INa+	Rare. Cerrone M, Delmar M. Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends in cardiovascular medicine. 2014;24(5):184-90

BrS16 OMIM: 601513	3q28	FGF12, FHAF1 Protein: Fibroblast growth factor homologues factor-1-mutation decreases INa+	↓INa	Rare Wang C, Wang C, Hoch EG, Pitt GS. Identification of novel interaction sites that determine specificity between fibroblast growth factor homologous factors and voltage-gated sodium channels. The Journal of biological chemistry. 2011;286(27):24253-63
BrS17 OMIM: 604427	3p22.2	SCN10A, Na _v 1.8/ Protein: Nav1.8- αsubunit of the neural sodium channel.	↓INa+	5%=16.7%Hu D, Barajas-Martinez H, Pfeiffer R,, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. Journal of the American College of Cardiology. 2014;64(1):66-79. Behr ER, Savio-Galimberti E, Barc J, Holst AG, Petropoulou E, Prins BP, et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovascular research. 2015;106(3):520-9 Behr ER, Savio-Galimberti E, Barc J, et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovascular research. 2015;106(3):520-9
BrS18 OMIM: 604674	6q	HEY2/Transcription factor identified in GWAS (transcriptional factor)	↑Na	RareBezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature genetics. 2013;45(9):1044-9

BrS19 OMIN 9603961	7q21.11	SEMA3A/Semaphorin 3A	inhibit K+ channel, voltage dependent, Kv4.3Kv4.3 channels	Rare Nicole J Boczek et al Characterization of SEMA3A-encoded semaphorin as a naturally occurring Kv4.3 protein inhibitor and its contribution to Brugada syndrome. Circ Res. 2014 Aug 1;115(4):460-9. doi: 10.1161/CIRCRESAHA. 115.303657.
BrS20 OMIM:* 601142	1p36.31	KCNAB2 the Voltage-Gated K+ Channel β2 subfamily A regulatory beta subunit 2	↑I _{TO} K ⁺	Rare Vincent Portero 1, et al.Dysfunction of the Voltage-Gated K+ Channel β2 Subunit in a Familial Case of Brugada SyndromeJ Am Heart Assoc. 2016 Jun 10;5(6):e003122. doi: 10.1161/JAHA.115.0031 22

Genes associated with Brugada syndrome.

Channel	Gene	Genes associated with Brugada syndrome. Protein
Sodium	SCN5A, GPD1-L, SCN1B, SN3B, SN2B, RANGRF, SLMAP SCN3B, KCNE3 KCNJ8	Nav1.5 Gycerol-3-P-DH-1 Nav β 1Nav β 1- β 1 subunit of the sodium channel carrying the sodium current: INa+Nav β 3 Nav β 2. RAN-G release factor(or MOGI) Sarcolemma associated protein MiRP2 K-voltage-gted subfamily E member 1 like Kv6.1Kir6.1
Potassium	KCN4 KCNE5 KCND3	Hyperpolarization cyclic nucleotide-gated 4 K voltage-gated subfamily E member 1 like Kv4.3 Kird4.3
Calcium	CACNCA1C CANCB2B CACNA2D1 TRPM4	Cav1.2 Voltage-dependent β -2 Voltage-dependent α 2/ δ 1 Transient receptor potential cation channel subfamily M member 4

Reported Gene Sym ABCC9 ATP binding cassette subfamily C member 9

of-function phenotype

ANK2

 α 1

CACNA1C

Α2 δ

CACN A2D1

β2CACNB2

FGF12

GPD1L

HCN4

KCND3

KCNE3

KCNE5

d Ge	d Genes for Brugada Syndrome				
ıbol	Gene Name				

Ankyrin 2

Calcium voltage-gated channel subunit alpha 1C

Calcium voltage-gated channel auxiliary subunit alpha 2C delta 1

Calcium voltage-gated channel auxiliary subunit beta 2

Fibroblast growth factor 12

Glicerol-3-phosphate dehydrogenase 1 like

Hyperpolarization activated cyclic nucleotide-gated potassium

channel 4

Encoding the KV4.3 K⁺ -channel (the α-subunit of the Ito[↑]) gain-

Potassium voltage-gated channel subfamily E regulatory subunit 3

Potassium voltage-gated channel subfamily E regulatory subunit 5

Potassium voltage-gated channel subfamily D member 3

HGNC

ID

60

493

1390

1399

1402

3668

28956

16882

6239

6243

6241

MIM Phenotype Record

Brugada syndrome 3-611875

Brugada syndrome 3-

611875

Brugada syndrome 4-

611876

Brugada syndrome 2-617777

Brugada syndrome 8-

613123

Brugada syndrome 9-

616399

Brugada syndrome 6-

613119

Number of Core

Publications

4

4

1q

Gene Symbol	Gene Name	HGNC ID	MIM Phenotype Record	Number of Core Publications	
KCNAB2	K ⁺ Voltage-Gated Channel Subfamily A Regulatory β Subunit 2	6229	601142		
RNAGRF	RAN guanine nucleotide release factor	17679	-	3	
PKP2	Pakophilin 2	9024	-	2	
SCN10A	Sodium voltage-gated channel alpha subunit 10	10582		5	
SCN1B	Sodium voltage-gated channel beta-subunit 1	10586	Brugada syndrome 5-612838	9	
SCN28	Sodium voltage-gated channel beta subunit 2	10589	-	4	
SCN3B	Sodium voltage-gated channel beta subunit 3	20665	Brugada syndrome 7-613120	4	
SCN5A	Sodium voltage-gated channel alpha subunit 5	10593	Brugada syndrome 1 -601144	7	
SEMA3A	Semaphoring 3A	19593	-	7	
SLMAP	Sarcolemma-associated protein	16643		1	
TRPM4	Transient receptor potential cation channel subfamily M member 4	17993	-	2	
HGNC ID: HUGO Gene Nomenclature Committee. The recourse for approved human gene nomenclature. MIM: McKusick's Mendelian Inheritance in Man (MIM) (1), is the primary repository of comprehensive, curated information on genes and genetic phenotypes and the relationships between them. MIM was published through 12 editions between 1966 and 1998, and OMIM has been online and searchable since 1987. MIM number A numerical assignment for inherited diseases, genes and functional segments of DNA, as listed in the comprehensive catalog Mendelian Inheritance in Man (created and maintained by Victor McKusick of Johns Hopkins Medical Center, Baltimore, until his passing in 2008). The catalogue assignment for a mendelian trait in the <i>Mendelian Inheritance in Man</i> (MIM) system. If the initial digit is 1, the trait is deemed autosomal dominant; if 2, autosomal recessive; if 3, then X-linked.					