HCM variant c.1458-1G>A in MYBPC3 and BrS association

Dr. Andrés R. Pérez Riera

This variant c.1458-1G>A in MYBPC3 **below to** Familial hypertrophic cardiomyopathy 4 OMIM # 115197. Familial hypertrophic cardiomyopathy is largely due to mutations in genes encoding sarcomere proteins. However, there are phenocopies that are due to mutations in protein kinases. These genes include the prkag2 gene which encodes a regulatory subunit of AMPK. The mutation appears to lead to constitutive activation of AMPK and results in a glycogen storage hypertrophic myopathy and tachyarrhythmias (as seen in Wolfe–Parkinson–White syndrome) (Gramlich M, Pane LS, Zhou Q et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol Med 2015:7(5):562-576.).

This disorder is extremely difficult to treat and early mortality is common. Given the potent off-target inhibition of AMPK by sunitinib (Haas J, Frese KS, Peil B et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 2015:36(18):1123-1135a.), pre-clinical studies could be undertaken that would examine whether sunitinib can prevent, delay, or even reverse the disease phenotype.

Another group of HCM phenocopies is the Noonan, Costello, and cranio-facio-cutaneous syndromes which are due to mutations involving the Ras/Raf pathway and the phosphatase regulating it (PTPN11), leading to constitutive activation of the pathway (Akinrinade O, Alastalo TP, Koskenvuo JW. Relevance of truncating titin mutations in dilated cardiomyopathy. Clin Genet 2016:90(1):49-54. 40) (Zhou Q, Kesteven S, Wu J et al. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model. Biomed Res Int 2015:2015:163564.) (Semsarian C, Ingles J. Expanding the genetic spectrum of hypertrophic cardiomyopathy: X marks the spot. Circ Cardiovasc Genet 2013:6(6):528-530.). These disorders are also very difficult to treat and lead to early mortality. It is conceivable that Raf pathway inhibitors, including sorafenib, could be used in the treatment of these patients, in whom there are very limited treatment options.

Phenocopies of HCM

There are some recognized HCM phenocopies, which can masquerade HCM, caused by mutations in

- 1) LAMP2 (Danon disease),
- 2) PRKAG2 (Wolff-Parkinson-White syndrome),
- **3)** GLA (Anderson-Fabry disease),
- 4) RAF1 and PTPN11 (LEOPARD syndrome and Noonan's syndrome),
- 5) GAA (Pompe's disease),
- TTR (amyloidosis) and FXN (Friederich's ataxia) (. Semsarian C, Ingles J. Expanding the genetic spectrum of hypertrophic cardiomyopathy: X marks the spot. Circ Cardiovasc Genet 2013:6(6):528-530.)(Rapezzi C, Arbustini E, Caforio AL et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013:34(19):1448-1458.). From those syndromic or metabolic cases, Fabry disease is particularly common in a 1-3% of adult HCM male series (Yousef Z, Elliott PM, Cecchi F et al. Left ventricular hypertrophy in Fabry disease: a practical approach to diagnosis. Eur Heart J 2013:34(11): 802-808.).

Age at diagnosis is a key point to know the etiology of cardiomyopathies. Inborn errors of metabolism are more commonly diagnosed in infants than in adults. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome, which is a genetic disorder characterized by mutations in genes involved in the RAS/MAPK pathway. RASopathies (Noonan, Costello and LEOPARD syndromes) are also a cause of HCM in children that could justify some cases of adults that could pass unnoticed (part of morphotype may be lost with development). (Kaski JP, Syrris P, Shaw A, et al. Prevalence of sequence variants in the RASmitogen activated protein kinase signaling pathway in pre-adolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 2012:5(3):317-326.) (Arad M, Maron BJ, Gorham JM et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 2005:352(4):362-372.).

Ruggiero Mango, MD, PhD; Andrea Luchetti, BSc; Raffaele Sangiuolo, MD; Valentina Ferradini, BSc; Nicola Briglia, MD; Emiliano Giardina, BSc; Fabrizio Ferrè, BSc; Manuela Helmer Citterich, BSc; Francesco Romeo, MD; Giuseppe Novelli, BSc; Federica Sangiuolo, BSc. Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping

Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome

Circ J 2016;(4) 80: 938–949. doi: 10.1253/circj.CJ-15-0685.

Free article.

Background: Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited disorder; mutations in at least 20 genes have been associated. Brugada syndrome (BrS) is an autosomal dominant inherited disorder caused by mutations mainly in the SCN5A gene. A new clinical entity that consists of HCM, typical electrical instability of BrS and sudden death (SD), is described. Methods and Results: The family was constituted by 7 members, 4 of who presented clinical features of HCM and electrical instability of BrS. The clinical presentation of proband was ventricular fibrillation. All members were clinically evaluated by physical examination, 12-lead electrocardiography, 2-dimensional echocardiography, stress test, electrocardiogram Holter, flecainide test, and electrophysiological study. An integrated linkage analysis and next generation sequencing (NGS) approach was used to identify the causative mutation. Linkage with the α-tropomyosin (TPM1) gene on chromosome 15q22 was identified. The NGS study identified a missense mutation within the TPM1 gene (c.574G>A; p.E192K), exactly located in a binding domain with polycystin-2 protein. No other pathogenic mutations were identified. Conclusions: This is the first report of an association between HCM and BrS, and the first to use a combined approach of linkage and NGS to identify a causative mutation in SD. The present study expands the clinical spectrum of disorders associated with the TPM1 gene and may be useful to report novel mechanisms of electrical instability in HCM and BrS. (Circ J 2016; 80: 938–949)

Key Words: Brugada syndrome; Hypertrophic cardiomyopathy; Next generation sequencing; Sudden death

Disease	Rhythm Abnorm ality	Inheritan ce	Chromo some Location	Gene	
Ventricular arrhythmias					

Hypertrophic cardiomyopathy	VT, VF	AD	7q3, 11p11.2,	Cardiac troponin T (1q3), titin, myosin essential light chain, myosin regulatory light chain, β-myosin heavy chain, α-actin, MLP, α-tropomyosin, cardiac troponin I
ARVD/ cardiomyopathy	VT, VF	AD	1q42- 43, 2q32, 3p23, 6p24, 10p12-1 4, 10p22, 12p11, 14q12-2 2, 14q24.3	RyR2, desmoplakin, plakophilin-2
ARVD/ cardiomyopathy with myofibrillar myopathy	VT, VF	AD	10q22.3	?
Familial palmoplantar keratosis	VT, IVCD	AR	17q21	Plakoglobin with ARVD (Naxos syndrome)

Familial palmoplantar keratosis	VT, IVCD	AR	6p24	Desmoplakin with ALVD (Carvajal syndrome)
Dilated cardiomyopathy	VT	AD	1q32, 1q42, 2q31, 2q35, 5q33, 6q12, 6q22.1, 9q13, 9q22, 10q21, 10q22.3, 11p11, 11p15.1, 14q12, 15q14, 15q22 titin (2q31)	Desmin, δ-sarcoglycan, α-actin, titin, β-myosin heavy chain, α-tropomyosin, MLP, α-actinin-2, ZASP, Phospholamba n
Dilated cardiomyopathy	VT	X-linked	Xp21	Dystrophin
Mitral valve prolapse	AF, ? SD	AD	16p11.2- 12.1	?
Barth syndrome	VT	X-linked	Xq28	G4.5 (tafazzin)
Left ventricular noncompaction	VT	X-linked	Xq28	G4.5 (tafazzin)
Left ventricular noncompaction	VT	AD	10q22.3, 11p15, 18q12	ZASP; α-dystrobrevin
Supraventricular arrhythmias				

Familial amyloidosis	Atrial standstil l, AF	AD	TTR locus	Prealbumin (transthyretin)
Conduction abno	rmalities			
Idiopathic restrictive	AVB, VT	AD,AR	2q31, ^a T TR locus; 19p12.2	Desmin (2q31), prealbumin cardiomyopat hy (transthyretin), troponin I
Familial amyloidosis	AVB	AD	TTR locus	Prealbumin (transthyretin)
Dilated cardiomyopathy with	AVB	AD	1p1- 1q1, 3p22, 6q23	Lamin A/C, SCN5A conduction disease
Holt–Oram syndrome	AVB, AT	AD, X-linked	12q24.1	TBX-5
Familial atrial septal defect	AVB, AF, SD	AD, ?	5q35, 5 p	Nkx2-5
Noonan syndrome	AVB, BBB, IVCD	AD	12q24	PTPN11
LEOPARD syndrome	AVB, BBB, IVCD	AD	17, 12q24	Neurofibromi n; PTPN11
Heterotaxy	AVB, SVT, AF	X-linked	Xp26	Zic3

Heterotaxy	AVB, SVT, AF	AD		NODAL, LEFTY A, LEFTY B, activin type IIB
Neurologic disor	ders			
Muscular dystroj	phies			
Duchenne	ST, AT, IVCD, VT	X-linked	Xp21	Dystrophin
Becker	AVB SVT, AF	X-linked	Xp21	Dystrophin
Limb-girdle	AVB	AR	2p13, 4q12, 5q33-34, 13q12, 15q15, 17q11-1 2, 17q21a	Dysferlin, β-sarcoglycan, δ-sarcoglycan, γ-sarcoglycan, calpain-3, telethonin, α-sarcoglycan
Limb-girdle	AVB, VT	AD	1q11- 21, 3p25, 5q31, 6q23	Lamin A/C, caveolin-3 (3p25), myotilin
Facioscapulohu meral	Atrial standstil 1, AF	AD	4q35, 10q	D4Z4
Emery– Dreifuss	Atrial standstil l, AF	X-linked	Xq28	Emerin
Emery– Dreifuss	Atrial standstil 1, AF	AD	1p1-1q1	Lamin A/C

Myotonic dystrophy	AVB, VT	AD	19q13.3	Myotonin protein kinase
Other neurologic	disorders			
Freiderich ataxia	Variable	AR	9q13- 31.3	Frataxin
Kearns–Sayre syndrome	AVB	Mitocho ndrial	mtDNA	tRNAleu(UU R)-3243
MELAS syndrome	AVB, VT	Mitocho ndrial	mtDNA	
MERRF syndrome	AVB, VT	Mitocho ndrial	mtDNA	
McArdle syndrome	SD, AVB	AR, AD	?	?
Kugelberg– Welander syndrome	Atrial standstil l, AF, AVB	AR	?	?