Electrocardiographic Score to Evaluate Myocardial Ischemia through Exercise Test

Augusto Hiroshi Uchida MD

Exercise Testing Score for Myocardial Ischemia Gradation. Indian Pacing Electrophysiol J. 2007 Jan–Mar; 7(1): 61–72.

Introduction – Overview

- There are several scores addressed to contribute to the interpretation of cardiological tests
- Great experience gathered in literature with the application in CAD patients.
- Complex nature of equations and lack of information in physicians constitute an obstacle for its use in clinical practice.

Introduction – General aspects

- Several mathematical rates and scores include clinical and test variables
- The goal is optimizing the diagnostic and prognostic power of exercise test.
- Many scores consider the aspects of the electrocardiographic response in its composition.

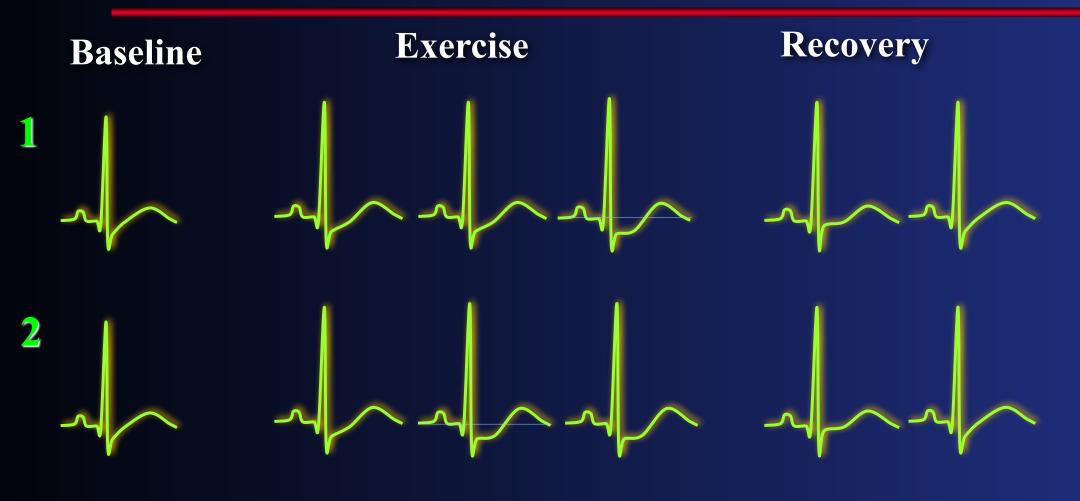
Introduction - Considerations

- Many assess a constellation of parameters, while others perform a classification based only on one aspect.
- Most divide the wide spectrum of electrocardiographic alterations in only two categories.

Introduction – Current Limitations

- No research line turned toward the evaluation beyond the simple dichotomy
- No score provides objective information on the degree of myocardial ischemia.
- The lack of an appropriate encoding for ischemic response determines an inappropriate comparison of results by the great studies.

Objective


- To structure and validate an electrocardiographic score
- Clearly defined variables and graduated according to a value scale
- The points represent a ranking of ischemia that is documented in the test.

Applicability

Classification of myocardial ischemia

- Diagnostic approach
- Therapeutic planning
- Evaluation of management
- Risk stratification
- Research data homogenization
- Serial analysis (comparative)
- Ischemic pre-conditioning

Rationale - Scale of Ischemia

Rationale - Scale of Ischemia

SCALE

Graduation system that stratifies the response in patterns that, when added, result in a scale or score.

Scale of Ischemia – Focus on ST Segment

- 1. Nothing
- 2. Small magnitude
- 3. Intermediary
- 4. Large
- 5. Very large

- 1. Upsloping
- 2. Convex
- 3. Horizontal
- 4. Downsloping
- 5. Elevation

- 1. Transitory peak
- 2. Late peak
- 3. Early rapid
- 4. Early slow
- 5. Very early

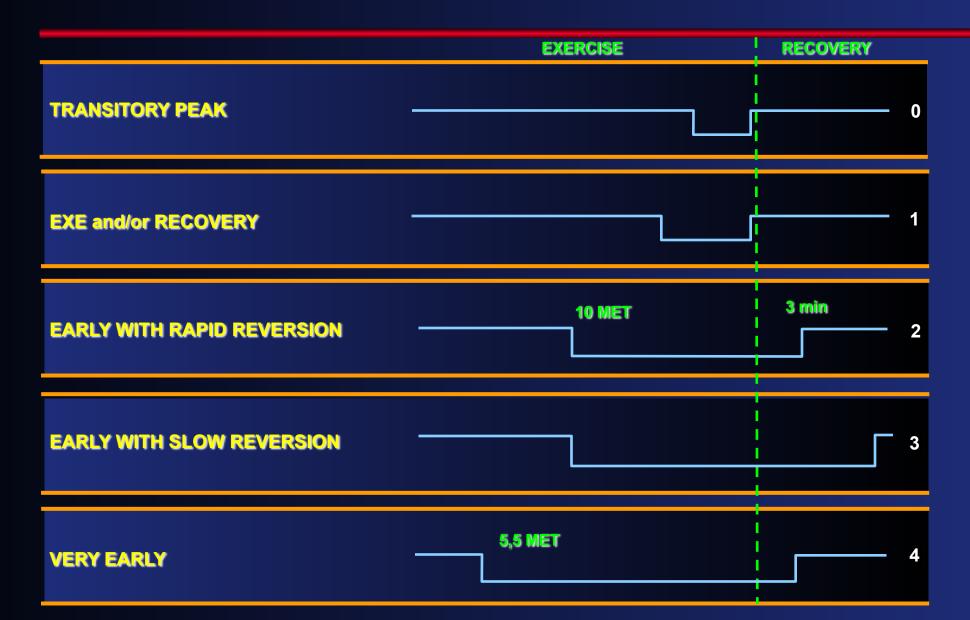
Electrocardiographic Scale of Ischemia

ST segment Clinics 1.Documented test 2. Easy identification 3.Reproducible **ECG Hemodynamics** The magnitude of electrocardiographically

documented ischemia is better than other clinical and hemodynamic parameters.

SCALE - Magnitude

ZERO	0
SMALL MAGNITUDE	1
1 to 1.5 mm	2
1.6 to 2 mm	3
> 2 mm	4


SCALE - Morphology

UPSLOPING ST DEPRESSION	0
CONVEX ST DEPRESSION	1
HORIZONTAL ST DEPRESSION	2
DOWNSLOPING ST DEPRESSION	3
ST ELEVATION	4

SCALE - Moment

TRANSITORY PEAK	0
PEAK and/or RECOVERY	1
EARLY WITH RAPID REVERSION	2
EARLY WITH SLOW REVERSION	3
VERY EARLY	4

SCALE - Moment

Bruce Protocol

	Velocity (mph)	Trend (%)	MET	
1	1.7	10	5.5	Very early
2	2.5	12	7	
3	3.4	14	10	Early
4	4.2	16	13	
5	5.0	18	16	
6	5.5	20	19	
7	6.0	22	22	